skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sid-Lakhdar, Wissam_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We combine deep Gaussian processes (DGPs) with multitask and transfer learning for the performance modeling and optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian processes (GPs) with the predictive power of deep learning. Multitask and transfer learning allow for improved learning efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our approach on two application problems. In this article, we combine DGPs with multitask and transfer learning to allow for both an improved tuning of an application parameters on problems of interest but also the prediction of parameters on any potential problem the application might encounter. 
    more » « less